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Abstract 
	 Emergent phenomena appear when interacting components give rise to novel 
behaviors not seen at the scale of their individual parts, resulting in new behaviors and 
complex systems that are very difficult to predict and understand through analysis of their 
individual components alone.  More specifically, a population of microsystems unpredictably 
interacts to produce a new macrosystem. However, the unpredictable element of emergent 
systems can be removed by changing the observer perspective in a manner that adds 
information. This can be performed in space, as with an expansion of the observer’s 3D frame 
of reference as if ‘zooming out’, in time, such as through increasing the observation period to 
capture the emergence of repetitive system behaviors, and in a ‘five-dimensional’ region of 
space, time and probability, through assigning observation probability ranges to the observer. 
Therefore, through the use of simplified mathematical models, the unpredictability of 
emergent phenomena is shown to be relative and based on observer perspective in coordinate 
space for both classical and chaotic systems. This emphasizes the importance of studying 
emergent phenomena, because with the addition of information, higher dimensions of 
perspective, and computational power, something unpredictable at one point in history may 
become predictable at a later time in history. 



Introduction 
	 When a population of microsystems interacts to generate a novel and unpredictable 
macrosystem, an emergent behavior has appeared. Although definitions of emergence can vary 
among academic groups, mathematically, this is often thought of as high-energy, far-from-
equilibrium systems that unpredictably self-organize to reduce chaotic energy flows (Grimes 
2017, Rupe and Crutchfield 2024). Emergent phenomena span all known spatial and temporal 
scales, and have included systems and behaviors from the European Renaissance, to the 
emergence of multicellular life and consciousness, to large scale climate patterns, to modern 
large language AI models (Zizzi 2000, Hinojosa 2009, Weber 2010, Lovejoy and Schertzer 2018, 
de Zarzà, de Curtò et al. 2023). However, when system-relevant information is added to the 
observer perspective in the coordinate space, a once unpredictable system can become 
mathematically definable and predictable.  
	 For example, in a classical system of equations, a set of n microsystems may have an 
initially definable set of descriptive formulas, while the resulting macrosystem may have yet 
another, distinct set of descriptive formulas. Yet if the observer modifies their coordinate frame 
of reference, including space, time and probability, interacting hidden systems may be 
encountered to either or both the microsystems and macrosystem. Through the analysis of 
hidden systems and their relationships to microsystems, and then through optionally studying 
their collective relationship to the macrosystem, a coherent function can be constructed for 
which predicts the macrosystem from its microsystems. Furthermore, it can be shown that 
analysis of hidden system elements and their relationships to microsystems can construct and 
therefore predict a macrosystem without prior knowledge of it. 
	 Adding information to the observer perspective through modifying space, time and 
probability coordinates can also be extended to explain the appearance of order from simple 
chaotic systems. For example, it can be shown that a hidden system can influence values of a 
simple logistic map in a distance, time and probability-dependent manner, driving the 
transition of chaotic behavior to orderly, periodic behavior. The observer can expand their x, y, 
and z coordinate frame of reference to observe the hidden system and mathematically explain 
the transition from chaos to order, as well as increasing their observation period to capture the 
behavioral transition, and increasing a probability range for observing the transition. 
	 An even more simplified mathematical representation of emergent phenomena might 
include microsystems A and B multiplied by a chaos-factor , such as  and . 
When a hidden ‘emergence factor’  is discovered by the observer, a collective system 

 can be described as , where  , 
indicating a lower degree of chaos than the sum of the initial individual components. The 
appearance of the ‘emergence factor’, which could describe a new interaction or variables that 
lie beyond the observer’s frame of reference, can be described as a ‘hidden system’. From this, 
it can be shown how changes in the coordinate space of the observer perspective can result in 
the appearance of new system behaviors. Since a variety of mathematical models have been 
used to model different emergent phenomena, and therefore, there is not a singular set of 

κ κA * A(t) κB * B(t)
κE * E(t)

κC * C(t) κC * C(t) = κA * A(t) + κB * B(t) + κE * E(t) κC < κA + κB + κE



equations commonly associated with emergence, three different models of varying complexity 
will be used to demonstrate the general principle of adding information to the observer 
perspective to reveal system information. For simplicity, deterministic and periodic functions 
will initially be used, following by a simplified chaotic system in the form of a logistic map, as 
well as a novel general model composed of a Fourier series. It will be shown that the discovery 
of hidden system components can be determined based upon the observer frame of reference 
in 3D space, as well as observation time and the probability of observation.  

Expanding 3-dimensional frames of reference to observe emergent 
phenomena 

	 In returning to the simple classical system as a starting point, let us first describe our 
microsystems, hidden systems, and macrosystem in  coordinate space. We may also 
assume that the total macrosystem in 3D coordinate space — in particular, the hidden systems 
required to collectively define it — are outside of the bounds of the observer’s coordinate 
frame of reference, and therefore, is initially hidden to the observer. 
	 To ensure that the macrosystem's total size coordinates do not initially include the 
hidden systems, we can define the functions such that the hidden systems are initially outside 
the observer's frame of reference. The set of  microsystems as a set of time-dependent 
functions, , can be defined as  
and . The macrosystem function describes the collective behavior of the 
microsystems, , which can be specified as . 
Hidden systems H are additional functions that become relevant when “zooming out” or 
expanding the observer’s frame of reference in coordinate space. They are initially outside the 
observer's frame of reference:  

And can be specified as  and . 
To ensure the hidden systems are initially outside the observer's perspective, we can set 
boundaries for the observer's initial frame of reference. Let the initial observer frame of 
reference be defined by the bounds , , and . Example bounds can 
be defined as: , , , , , . Initially, the observer's 
frame of reference can be represented as: 

 
To include the coordinates of the hidden systems, we expand the observer's frame of 
reference, which can be specified as: , , , , , 

. The expanded frame of reference can be represented as: 
 

In summary, the initially observed conditions are  
 for microsystems,  

for the macrosystem,  for the 

x , y, z

n
Mi(t) = (xi(t), yi(t), zi(t)) for i = 1,2,…, n M1(t) = (sin(t), cos(t), t)

M2(t) = (cos(t), sin(t), t)
C(t) = (X(t), Y (t), Z (t)) C(t) = (t2, sin(t) + cos(t), t)

Hj(t) = (uj(t), vj(t), wj(t)) for j = 1,2,…, m
H1(t) = (t + 10, exp(t), exp(−t)) H2(t) = (t − 10, log(t + 1), t)

[xmin, xmax] [ymin, ymax] [zmin, zmax]
xmin = − 5 xmax = 5 ymin = − 2 ymax = 2 zmin = 0 zmax = 5

R = {(x , y, z) ∣ xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax}

x′￼min = − 15 x′￼max = 15 y′￼min = − 10 y′￼max = 10 z′￼min = − 5
z′￼max = 10

R′￼= {(x , y, z) ∣ x′￼min ≤ x ≤ x′￼max, y′￼min ≤ y ≤ y′￼max, z ′￼min ≤ z ≤ z′￼max}

M1(t) = (sin(t), cos(t), t), M2(t) = (cos(t), sin(t), t) C(t) = (t2, sin(t) + cos(t), t)
H1(t) = (t + 10, exp(t), exp(−t)), H2(t) = (t − 10, log(t + 1), t)



hidden systems, and  for the initial frame of 
reference. The observer then expands their frame of reference to: 

 
Therefore, the hidden systems  and  are initially outside the observer's perspective. 
By expanding the observer's frame of reference, the hidden systems are included, 
demonstrating how the emergent macrosystem can be better understood with additional 
information by expanding the observer perspective in 3D coordinate space. 
	 To briefly analyze how the hidden systems 3D coordinates are initially outside of the 
observer’s frame of reference, one can first redefine the initial bounds of the observer's frame 
of reference: , , , , , . The initial frame of 
reference is therefore: 

 
The hidden systems are then restated:  and  

. 
One may then analyze the coordinates of these hidden systems to see if they fall within the 
initial frame of reference. For the first hidden system, , observing  
the X-coordinate at , for ,  (which is outside the range ), for ,  
(which is outside the range ). Generally,  will always be greater than 10, thus 
outside the initial -range. For the Y-coordinate, , for , (which is within the 
range ), and for ,  (which is outside the range ). Again,  
grows exponentially, so for ,  will be outside the initial -range. For the Z-coordinate, 

, for ,  (which is within the range ), and for ,  (which is 
within the range ). Therefore,  decreases but remains within the initial -range. 
Since the -coordinate and -coordinate are initially outside the observer's frame of reference, 

 is outside the initial frame of reference. 
	 To analyze the second hidden system,  at the X-coordinate 
through , for ,  (which is outside the range ), and for ,  
(which is at the boundary of the range ). Therefore,  will be less than -5 for , 
thus outside the initial -range. For the Y-coordinate: , for ,  (which 
is within the range ), and for ,  (which is at the boundary of the range 

). Again,  grows slowly, but for ,  will be outside the initial -range. 
Lastly, for the Z-coordinate , for ,  (which is within the range ), for ,  
(which is within the range ), and for ,  (which is at the boundary of the range 

). Therefore,  will be within the range for . Since the -coordinate is initially 
outside the observer's frame of reference,  is also outside the initial frame of reference. 
	 To include the coordinates of the hidden systems within the observer’s frame of 
reference, we need to expand the frame of reference in the coordinate space: The expanded 
bounds are defined as , , , , , . The 
expanded frame of reference equation is given as  

 

R = {(x , y, z) ∣ − 5 ≤ x ≤ 5, − 2 ≤ y ≤ 2,0 ≤ z ≤ 5}

R′￼= {(x , y, z) ∣ − 15 ≤ x ≤ 25, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30}
H1(t) H2(t)

xmin = − 5 xmax = 5 ymin = − 2 ymax = 2 zmin = 0 zmax = 5

R = {(x , y, z) ∣ − 5 ≤ x ≤ 5, − 2 ≤ y ≤ 2,0 ≤ z ≤ 5}
H1(t) = (t + 10, exp(t), exp(−t))

H2(t) = (t − 10, log(t + 1), t)

H1(t) = (t + 10, exp(t), exp(−t))
t + 10 t = 0 x = 10 [−5,5] t = 1 x = 11

[−5,5] t + 10
x exp(t) t = 0 y = 1

[−2,2] t = 1 y = e ≈ 2.718 [−2,2] exp(t)
t > 0 y y

exp(−t) t = 0 z = 1 [0,5] t = 1 z = 1
e ≈ 0.368

[0,5] exp(−t) z
x y

H1(t)
H2(t) = (t − 10, log(t + 1), t)

t − 10 t = 0 x = − 10 [−5,5] t = 5 x = − 5
[−5,5] t − 10 t < 15

x log(t + 1) t = 0 y = log(1) = 0
[−2,2] t = 6.389 y ≈ 2

[−2,2] log(t + 1) t > 6.389 y y
t t = 0 z = 0 [0,5] t = 4 z = 2

[0,5] t = 25 z = 5
[0,5] t t ≤ 25 x

H2(t)

x′￼min = − 15 x′￼max = 15 y′￼min = − 10 y′￼max = 10 z′￼min = − 5 z′￼max = 10

R′￼= {(x , y, z) ∣ − 15 ≤ x ≤ 30, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30}



Therefore, the initial frame of reference, defined by , which does not include the coordinates 
of the hidden systems. The hidden systems initially have  and  coordinates outside the 
bounds of . However, the expanded frame of reference  includes the coordinates of the 
hidden systems, demonstrating that these systems are initially outside the observer's 
perspective. 

Expanding temporal observation period to observe emergent phenomena 

	 In addition to expanding the observer perspective in 3D coordinate space, we may also 
increase the observation period in time to capture additional details that lead to an 
understanding of an emergent system. To see this in a simplified, classical (non-chaotic) 
system, we can incorporate repetitive and cyclic behavior into the model, define periodic 
functions for the microsystems and hidden systems, and then connect these behaviors to the 
macrosystem. Time  is added to the observer's frame of reference to show how the cyclic 
behavior is revealed with sufficient observational time. The observation time can initially be 
too short to see a complete periodic cycle, and therefore, yield insufficient information to 
understand a system that might appear emergent. When the observation time is increased so 
that a full periodic cycle can be observed, phenomena that appear unpredictable can then 
become explained.  
	 As before, one can start by defining  microsystems, but this time with periodic 
behavior, . An example specification could be 

 and .We can then define  hidden systems with 
periodic behavior as , such as 

 and . 
The macrosystem function then describes the collective behavior influenced by the periodic 
nature of microsystems and hidden systems: . 
Then, to connect the behaviors of the microsystems and hidden systems to the macrosystem 
through cyclic behavior, we can define the macrosystem as a function of both: 

 

 

 

R
x , y, z

R R′￼

t

n
Mi(t) = (xi(t), yi(t), zi(t)) for i = 1,2,…, n

M1(t) = (sin(t), cos(t), t) M2(t) = (cos(t), sin(t), t) m
Hj(t) = (uj(t), vj(t), wj(t)) for j = 1,2,…, m

H1(t) = (t + 10, exp(sin(t)), exp(−cos(t))) H2(t) = (t − 10, log(cos(t) + 2), sin(t) + 1)

C(t) = (X(t), Y (t), Z (t))

X(t) = f1
n

∑
i=1

xi(t),
m

∑
j=1

uj(t)

Y (t) = f2
n

∑
i=1

yi(t),
m

∑
j=1

vj(t)

Z (t) = f3
n

∑
i=1

zi(t),
m

∑
j=1

wj(t)



Which can be specified, for example, as: , 
 and . 

Then, one can add a dimension to the observer perspective, so that the observer's frame of 
reference is now in spacetime . Let the initial bounds be set as , , 

, , , , ,  (less than one full cycle for ). 
Therefore, the initial frame of reference can be stated as: 

 
The inclusion of two full cycles into the observer perspective then appears as , with 
the expanded frame of reference now becoming: 

 
Therefore, we start with the initial systems as follows: microsystems 

, hidden systems 
, and the 

macrosystem: 
 

While the the observer’s initial frame of reference is arbitrarily stated as: 
 

Such is then expanded to the following to include two full cycles: 
 

By incorporating repetitive/cyclic behaviors that arise from the microsystem and hidden 
systems, one can demonstrate how the observer's perspective in spacetime can influence the 
perception of these behaviors. By expanding the frame of reference in time, the previously 
hidden cyclic behaviors are revealed, connecting the microsystem and hidden system 
behaviors to the macrosystem. The -component  
ranges from 11.55 to approximately 24.57 (now within the expanded -range ). 
The -component  ranges from about 0.37 
to 7.72 (within the expanded -range ). The -component 

 ranges from 1.37 to approximately 26.5 (now within the 
expanded -range ). 
	 Therefore, by expanding the observer's frame of reference to include a longer time 
span, the initially hidden cyclic behaviors and the coordinates of the hidden systems fall 
within the expanded spacetime frame. This demonstrates how emergent properties and 
behaviors can become observable when the observer's frame of reference is sufficiently 
extended, connecting the microsystem and hidden system behaviors to the macrosystem. 
	 In addition to ‘hiding’ the  values of the hidden systems until a certain temporal 
value is reached, therefore revealing the full 3D system once the observer’s frame of reference 
in time is expanded to include a sufficient time span to observe full cyclic behaviors, it is also 
possible to ‘discover’ a new function that describes the collective behavior arising from both 
microsystems and hidden systems, which can in turn be aggregated into a new collective 
system.  

X(t) = sin(t) + cos(t) + exp(sin(t)) + (t + 10)
Y (t) = cos(t) + sin(t) + exp(−cos(t)) + log(cos(t) + 2) Z (t) = t + t + sin(t) + 1 + exp(−cos(t))

(x , y, z , t) xmin = − 5 xmax = 5
ymin = − 2 ymax = 2 zmin = 0 zmax = 5 tmin = 0 tmax = π sin(t)

R = {(x , y, z , t) ∣ − 5 ≤ x ≤ 5, − 2 ≤ y ≤ 2,0 ≤ z ≤ 5,0 ≤ t ≤ π}
t′￼max = 4π

R′￼= {(x , y, z , t) ∣ − 15 ≤ x ≤ 30, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30,0 ≤ t ≤ 4π}

M1(t) = (sin(t), cos(t), t), M2(t) = (cos(t), sin(t), t)
H1(t) = (t + 10, exp(sin(t)), exp(−cos(t))), H2(t) = (t − 10, log(cos(t) + 2), sin(t) + 1)

C(t) = (sin(t) + cos(t) + exp(sin(t)) + (t + 10), cos(t) + sin(t) + exp(−cos(t)) + log(cos(t) + 2), t + t + sin(t) + 1 + exp(−cos(t)))

R = {(x , y, z , t) ∣ − 5 ≤ x ≤ 5, − 2 ≤ y ≤ 2,0 ≤ z ≤ 5,0 ≤ t ≤ π}

R′￼= {(x , y, z , t) ∣ − 15 ≤ x ≤ 30, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30,0 ≤ t ≤ 4π}

x X(t) = sin(t) + cos(t) + exp(sin(t)) + (t + 10)
x [−15,30]

y Y (t) = cos(t) + sin(t) + exp(−cos(t)) + log(cos(t) + 2)
y [−10,10] z

Z (t) = 2t + sin(t) + 1 + exp(−cos(t))
z [−5,30]

x , y, z



	 To illustrate this, one can once again define our microsystems, hidden systems, 
macrosystem and collective behavior function.  microsystems with periodic behavior are 
defined as  and , while  hidden systems with 
periodic behavior are defined as  and 

. The macrosystem function describes the collective 
behavior influenced by the periodic nature of microsystems and hidden systems,  

. One can then introduce a new function  that describes the time-
dependent interaction between the microsystems and hidden systems, which can only be 
discovered after observing at least one full cycle:  . 
This can be defined as: 

 

 

 

In the initial time frame , the cyclic behavior is not fully visible when microsystems are 
defined as  and hidden systems are defined as 

. 
Likewise, the collective behavior function  is not fully observable: 

  

After expanding the time frame to , the cyclic behavior becomes fully visible as the 
microsystems and hidden systems can now complete multiple cycles. The collective behavior 
function  reveals the full interaction: 

  

  

 

To demonstrate the discovery of the collective behavior function, one may note that the initial 
observations span 0 to . The cyclic behaviors of the microsystems and hidden systems are 
partially observed, and the collective behavior function  is not yet fully apparent due to 
incomplete cycles. Once we expand the observation cycle to 0 to , the full cyclic behaviors of 
the microsystems and hidden systems are observed. The collective behavior function  
becomes fully observable and reveals the interactions between microsystems and hidden 
systems. Therefore, once again, by expanding the observer's time frame to include multiple 
cycles, the initially hidden cyclic behaviors and the collective behavior function  become 
fully visible. This demonstrates that the interaction between microsystems and hidden 

n
M1(t) = (sin(t), cos(t), t) M2(t) = (cos(t), sin(t), t) m

H1(t) = (t + 10, exp(sin(t)), exp(−cos(t)))
H2(t) = (t − 10, log(cos(t) + 2), sin(t) + 1)

C(t) = (X(t), Y (t), Z (t)) B(t)

B(t) = g(M(t), H(t))

Bx(t) = ∫
t

0
(sin(τ) + cos(τ) + exp(sin(τ)) + (τ + 10)) dτ

By(t) = ∫
t

0
(cos(τ) + sin(τ) + exp(−cos(τ)) + log(cos(τ) + 2)) dτ

Bz(t) = ∫
t

0
(2τ + sin(τ) + 1 + exp(−cos(τ))) dτ

[0,π]
M1(t) = (sin(t), cos(t), t)

H1(t) = (t + 10, exp(sin(t)), exp(−cos(t)))
B(t)

Bx(t) = ∫
t

0
(sin(τ) + cos(τ) + exp(sin(τ)) + (τ + 10)) dτ

[0,4π]

B(t)

Bx(t) = ∫
4π

0
(sin(τ) + cos(τ) + exp(sin(τ)) + (τ + 10)) dτ

By(t) = ∫
4π

0
(cos(τ) + sin(τ) + exp(−cos(τ)) + log(cos(τ) + 2)) dτ

Bz(t) = ∫
4π

0
(2τ + sin(τ) + 1 + exp(−cos(τ))) dτ

π
B(t)

4π
B(t)

B(t)



systems, leading to the macrosystem behavior, can only be fully understood when sufficient 
observational time is allowed to reveal the complete cycles. 

Addition of probability to the observer perspective and its influence on 
capturing emergent phenomena 

	 Thus far, we have seen that in a classical system of equations, expansion of the observer 
perspective in 3D coordinate space or 4D spacetime, can result in the acquisition of new 
information that allows one to mathematically describe systems that previous appeared 
unpredictable or emergent. Similarly, it is possible to integrate a probability dimension into 
the system by adding a probability variable  that influences the x, y, and z (and potentially t) 
coordinates. This probability variable can be thought of as a measure of the likelihood of the 
observer detecting certain states of the system. The system's behavior will thus depend not 
only on time but also on this probability variable. To begin, the probability variable can be 
denoted by , where . This variable represents the likelihood of observing certain 
behaviors in the system. Then, equations representing microsystems and hidden systems are 
modified to include the probability variable . Microsystems are redefined as 

 and , while hidden systems 
are redefined as  and 

. 
The macrosystem function now includes the probability variable: 

 
The collective behavior function  now depends on both time and probability: 

 

 

 

The observer's frame of reference can now be expanded to include the probability dimension. 
Initially, the observer might have a limited range of  values, which can be expanded over time. 
Let the initial bounds for probability be  and : 

 
To include the full range of probability values and expand the observer’s frame of reference in 
probability space: 

 
Therefore, by integrating the probability variable , the system's x, y, and z coordinates in 4D 
space are now influenced by both time and probability. The observer's frame of reference can 

p

p 0 ≤ p ≤ 1

p
M1(t, p) = (sin(t) ⋅ p, cos(t) ⋅ p, t ⋅ p) M2(t, p) = (cos(t) ⋅ p, sin(t) ⋅ p, t ⋅ p)

H1(t, p) = ((t + 10) ⋅ p, exp(sin(t)) ⋅ p, exp(−cos(t)) ⋅ p)
H2(t, p) = ((t − 10) ⋅ p, log(cos(t) + 2) ⋅ p, sin(t) + 1 ⋅ p)

C(t, p) = (X(t, p), Y (t, p), Z (t, p))
B(t, p)

Bx(t, p) = ∫
t

0
(sin(τ) ⋅ p + cos(τ) ⋅ p + exp(sin(τ)) ⋅ p + (τ + 10) ⋅ p) dτ

By(t, p) = ∫
t

0
(cos(τ) ⋅ p + sin(τ) ⋅ p + exp(−cos(τ)) ⋅ p + log(cos(τ) + 2) ⋅ p) dτ

Bz(t, p) = ∫
t

0
(2τ ⋅ p + sin(τ) + 1 ⋅ p + exp(−cos(τ)) ⋅ p) dτ

p
pmin = 0 pmax = 0.5

R(t, p) = {(x , y, z , t, p) ∣ − 5 ≤ x ≤ 5, − 2 ≤ y ≤ 2,0 ≤ z ≤ 5,0 ≤ t ≤ π ,0 ≤ p ≤ 0.5}

R′￼(t, p) = {(x , y, z , t, p) ∣ − 15 ≤ x ≤ 30, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30,0 ≤ t ≤ 4π ,0 ≤ p ≤ 1}
p



initially cover a limited range of probability values, hiding certain behaviors until the frame of 
reference is expanded to include the full probability range. 
	 To summarize, the initial conditions were, for microsystems,  

, for hidden systems,  
 

and for the macrosystem,  
 

The collective behavior function is defined as: 

 

 

 

The observer’s frame of reference is then expanded to 
. 

	 This framework shows how the addition of a probability variable can hide or reveal 
emergent behaviors depending on the observer's probability range, adding another layer to 
the understanding of emergent systems. 

The relativity of chaotic emergent systems 
	 We started with a simpler, classical system of equations that function as individual 
components with different behaviors than a collective macrosystem, and are thus initially 
unable to describe it. Upon expanding the observer perspective in the space of 3D 
coordinates, time, and/or probability, additional information can be uncovered which allows 
for a complete description of the collective system, rendering its ‘emergent’ behavior relative 
based on observer perspective. This can then be expanded into a simple chaotic system, as 
emergence is sometimes defined in academic settings as ‘high-energy, far-from-equilibrium 
systems that unpredictably self-organize to reduce chaotic energy flow’. To again demonstrate 
the relativity of emergent phenomena based on observer perspective, our simple chaotic 
system will mathematically take the form of a logistic map and surrounding ‘hidden systems’, 
that when revealed as the observer changes perspective in space, time, or probability, allow for 
a complete mathematical description of the previously unpredictable emergent system.  
	 To start, one can again first expand the user perspective in 3D coordinate space by 1) 
incorporating a logistic map system with a decreasing  value, 2) adding a hidden system 
moving toward the logistic map system, 3) expanding the observer’s frame of reference. First, 
one can define a logistic map with a decreasing  value as , where  is a 
time-dependent function that decreases after the hidden system reaches a threshold distance: 

M1(t, p) = (sin(t) ⋅ p, cos(t) ⋅ p, t ⋅ p), M2(t, p) = (cos(t) ⋅ p, sin(t) ⋅ p, t ⋅ p)
H1(t, p) = ((t + 10) ⋅ p, exp(sin(t)) ⋅ p, exp(−cos(t)) ⋅ p), H2(t, p) = ((t − 10) ⋅ p, log(cos(t) + 2) ⋅ p, sin(t) + 1 ⋅ p)

C(t, p) = (sin(t) ⋅ p + cos(t) ⋅ p + exp(sin(t)) ⋅ p + (t + 10) ⋅ p, cos(t) ⋅ p + sin(t) ⋅ p + exp(−cos(t)) ⋅ p + log(cos(t) + 2) ⋅ p,2t ⋅ p + sin(t) + 1 ⋅ p + exp(−cos(t)) ⋅ p)

Bx(t, p) = ∫
t

0
(sin(τ) ⋅ p + cos(τ) ⋅ p + exp(sin(τ)) ⋅ p + (τ + 10) ⋅ p) dτ

By(t, p) = ∫
t

0
(cos(τ) ⋅ p + sin(τ) ⋅ p + exp(−cos(τ)) ⋅ p + log(cos(τ) + 2) ⋅ p) dτ

Bz(t, p) = ∫
t

0
(2τ ⋅ p + sin(τ) + 1 ⋅ p + exp(−cos(τ)) ⋅ p) dτ

R′￼(t, p) = {(x , y, z , t, p) ∣ − 15 ≤ x ≤ 30, − 10 ≤ y ≤ 10, − 5 ≤ z ≤ 30,0 ≤ t ≤ 4π ,0 ≤ p ≤ 1}

r

r xn+1 = rn ⋅ xn ⋅ (1 − xn) rn



 
Then, the hidden system is defined as a time-dependent system located in 3D space, 
specifically, . The hidden system starts at an initial distance from the 
logistic map system’s location (assume the logistic map is at  = ) and moves toward it 
over time as , where , , and  are the velocities 

in the x, y, and z directions. The hidden system stops when it reaches a threshold distance 
 from the logistic map system: 

 

Initially, the observer’s frame of reference might be too small to include the hidden system: 
 

Which can be defined as . 
This initial frame does not include the hidden system: 

 
However, as time progresses, the observer can expand their frame of reference to: 

 
This can be defined as . Now, the 

hidden system is within the observer's frame of reference once it moves closer to the logistic 
map system. 
	 Therefore, the hidden system is initially outside the observer’s view, so the observer 
cannot see the influence of this system on the logistic map. The hidden system moves toward 
the logistic map, and at a certain threshold distance, the  value of the logistic map begins to 
decrease, transitioning the system from chaos to order. Then, the observer expands their frame 
of reference, eventually including the hidden system and observing the transition from chaos 
to order. This demonstrates how hidden systems can influence chaotic systems when they 
enter the observer’s frame of reference, leading to emergent order. 
	 To add further depth on how the interaction between the hidden system and the 
logistic map system leads to a decrease in the  value and a transition from chaotic to periodic 
behavior, one can start be defining the approach of the hidden system. The hidden system  
moves closer to the logistic map system's coordinates . Its coordinates are given by: 

   

The distance between the hidden system and the logistic map system at any time  is: 

 

The hidden system continues to move until the distance  reaches the threshold distance 
. Once the distance , the hidden system stops moving: 

. The threshold distance is defined as the point where the hidden 

system is close enough to influence the logistic map system. When the hidden system stops at 
, the interaction with the logistic map system begins. The  value of the logistic map 

starts to decrease from its initial value : . Here, 

rn = rmax − Δr ⋅ n for n ≥ nthreshold

H(t) = (xH(t), yH(t), zH(t))
L (xL, yL, zL)

H(t) = (xH(0) − vx ⋅ t, yH(0) − vy ⋅ t, zH(0) − vz ⋅ t) vx vy vz

dthreshold
Distance(H(t), L) = (xH(t) − xL)2 + (yH(t) − yL)2 + (zH(t) − zL)2 ≤ dthreshold

R = {(x , y, z) ∣ xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax}
Rinitial = {(x , y, z) ∣ − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1}

H(0) = (xH(0), yH(0), zH(0)) with |xH(0) | > 1 or  |yH(0) | > 1 or  |zH(0) | > 1

R′￼= {(x , y, z) ∣ x′￼min ≤ x ≤ x′￼max, y′￼min ≤ y ≤ y′￼max, z ′￼min ≤ z ≤ z′￼max}
R′￼expanded = {(x , y, z) ∣ − 5 ≤ x ≤ 5, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5}

r

r
H(t)

L
H(t) = (xH(0) − vx ⋅ t, yH(0) − vy ⋅ t, zH(0) − vz ⋅ t)

t

d(t) = (xH(t) − xL)2 + (yH(t) − yL)2 + (zH(t) − zL)2

d(t)
dthreshold d(t) ≤ dthreshold
H(tstop) = H(tthreshold)

dthreshold r
rmax rn = rmax − Δr ⋅ (n − nthreshold)



 is the iteration step when the hidden system reaches . The decrease in  
continues as  increases, leading to a transition from chaotic to periodic behavior in the 
logistic map. As the  value decreases, the logistic map transitions from chaotic behavior 
(where   might be in a chaotic regime) to periodic behavior (as  moves into a range that 
produces periodic or stable fixed points). The system's behavior becomes more ordered, with 
lower entropy, as  continues to decrease. 
	 In summary, in the initial phase, the hidden system  moves toward the logistic map 
system’s location. The logistic map remains chaotic as  is constant at . 
The threshold interaction occurs when the hidden system reaches , stops, and the  
value of the logistic map begins to decrease. Then, the decreasing  value gradually shifts the 
logistic map from chaotic to periodic behavior during the transition phase. Lastly, the logistic 
map system becomes periodic, with stable or repeating values of  as  decreases sufficiently 
as it reaches its final phase. Such an interaction demonstrates how a hidden system, once 
brought into proximity with the primary system (logistic map), can influence it to transition 
from chaos to order. The observer's frame of reference, initially too small to include the 
hidden system, must be expanded to see this influence and the resulting emergent behavior. 

Expanding temporal observation period to observe emergent phenomena in 
chaotic systems 

	 As with the simpler classical system, it is also possible to demonstrate that a particular 
observation period is required to see the emergence of periodic, orderly behavior in the 
logistic map system. To do so, a time variable will be introduced into the observer's frame of 
reference. This time variable will be tied to the period during which the hidden system moves 
into proximity with the logistic map system, triggering the decrease in the  value. Initially, the 
hidden system moves toward the logistic map's coordinates over time  and stops at the 
threshold distance , , where , , and 

 are the velocities in the x, y, and z directions, respectively,  is the time it takes for 
the hidden system to reach the threshold distance , at which point the  value starts 
to decrease. The logistic map equation remains , where over time, the  
value changes at : 

 

The observer's frame of reference now includes a time variable: 
 

To witness the emergence of order from the chaotic system, the observer must include the 
time period  in their observation.  is the time required to observe the 
transition to periodic behavior after the hidden system has influenced the logistic map. 

nthreshold dthreshold r
n

r
rmax r

r
H(t)

r rmax
dthreshold r

r

xn r

r
t

dthreshold H(t) = (xH(0) − vx ⋅ t, yH(0) − vy ⋅ t, zH(0) − vz ⋅ t) vx vy

vz tthreshold
dthreshold r

xn+1 = rn ⋅ xn ⋅ (1 − xn) r
tthreshold

rn = {
rmax, if t < tthreshold
rmax − Δr ⋅ (n − nthreshold), if t ≥ tthreshold

R(t) = {(x , y, z , t) ∣ xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax, tmin ≤ t ≤ tmax}

[0,tthreshold + Δt] Δt



If the observer's time frame is too short, say , they will only see the chaotic 
behavior of the logistic map with . The hidden system will not have reached the 
logistic map, and no decrease in  will have occurred:\ 

 
Therefore, to observe the transition to order, the observer must expand their time frame to 
include : 

 
In this expanded time frame, the observer will first see the initial chaotic phase, up to: 

, where . After , as  starts to decrease, the logistic map 
transitions to periodic behavior. 
	 Therefore, by adding a time variable to the observer's perspective, it can be 
demonstrated that a sufficient observation period is required to see the emergence of periodic, 
orderly behavior in the logistic map system. If the observer's time frame is too short, they will 
only observe chaotic behavior. Once the hidden system moves into proximity and influences 
the logistic map, and if the observer's time frame is extended to include this period, they will 
observe the transition from chaos to order. 

Addition of probability to the observer perspective to capture emergent 
phenomena in chaotic systems 

	 Next, as with the classical system, yet another dimension in the form of probability can 
be incorporated into the observer's perspective by modifying the equations so that the 
behavior of the hidden system, including its influence on the logistic map, depends not only 
on spatial coordinates and time but also on a probability variable . This probability variable 
can represent the likelihood of the observer detecting certain behaviors or interactions in the 
system. The hidden system is now described as a function of time , spatial coordinates , 
and a probability variable , where where : 

 

The hidden system moves toward the logistic map system, but the speed and proximity are 
influenced by . The hidden system stops moving when it reaches the threshold distance 

, which is now also influenced by : 

 

The logistic map is still given by , but now the  value depends on both 
time and probability: 

tmax < tthreshold
rn = rmax

r
Rinitial(t) = {(x , y, z , t) ∣ − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1,0 ≤ t ≤ tinitial}

tthreshold
R′￼(t) = {(x , y, z , t) ∣ − 5 ≤ x ≤ 5, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5,0 ≤ t ≤ tthreshold + Δt}

t = tthreshold rn = rmax t = tthreshold rn

p

t (x , y, z)
p 0 ≤ p ≤ 1

H(t, p) = (xH(0) − vx ⋅ t ⋅ p, yH(0) − vy ⋅ t ⋅ p, zH(0) − vz ⋅ t ⋅ p)

p
dthreshold p

d(t, p) = (xH(t, p) − xL)2 + (yH(t, p) − yL)2 + (zH(t, p) − zL)2 ≤ dthreshold( p)

xn+1 = rn ⋅ xn ⋅ (1 − xn) r



 

The hidden system needs to reach a certain distance  to trigger the decrease in , 
which now depends on both  and . The observer's frame of reference is then expanded to 
include the probability dimension: 

 
Initially, the observer may only be able to observe a limited range of probability values: 

 
With this limited range, the hidden system's influence might not be fully observed, and the  
value decrease might be hidden.  
	 To observe the full transition to order, the observer needs to expand the probability 
range: 

 
In this expanded frame of reference, the observer will first see chaotic Behavior up to the 
point where , with , followed by the transition to order, as after 
the hidden system reaches the threshold influenced by , the  value begins to decrease, 
leading to periodic behavior in the logistic map. 
	 Therefore, by adding a probability dimension to the observer's perspective, the 
visibility of the hidden system’s influence on the logistic map is further controlled. Initially, 
with a limited probability range, certain behaviors (like the decrease in ) are hidden. As the 
observer's probability range is expanded, these behaviors become observable, showing the full 
transition from chaos to order in the system. 
	 This demonstrates how the emergence of order in a chaotic system can depend on 
both the time and probability dimensions of the observer's frame of reference. The hidden 
system's movement and influence on the logistic map are both time-dependent and 
probability-dependent, requiring sufficient observation in both dimensions to fully capture 
the emergent behavior. 

A general model of multi-scaled emergent phenomena via Fourier series 

	 Emergent phenomena inherently involve complex interactions across multiple scales 
of space, time and/or probability that feed back onto one another. Therefore, an adequate 
general model of emergent phenomena must involve a mathematical superstructure in 
coordinate space that is capable of incorporating both linear and nonlinear dynamics, and of 
which can be composed of hierarchies of nested equations. The Fourier series allows an 
infinite number of oscillators of differing magnitudes to be nested within one another, and 
therefore act as functions of one another, whether or not all are simultaneously visible, and 
has been previous used for modeling multiscaled phenomena (Sun and Zhang 2022). This 
aligns well towards the creation of a general mathematical model of emergent phenomena, 

rn = {
rmax, if d(t, p) > dthreshold( p)
rmax − Δr ⋅ (n − nthreshold( p)), if d(t, p) ≤ dthreshold( p)

dthreshold( p) r
t p

R(t, p) = {(x , y, z , t, p) ∣ xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax, tmin ≤ t ≤ tmax, pmin ≤ p ≤ pmax}

Rinitial(t, p) = {(x , y, z , t, p) ∣ − 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1,0 ≤ t ≤ tinitial,0 ≤ p ≤ pinitial}
r

R′￼(t, p) = {(x , y, z , t, p) ∣ − 5 ≤ x ≤ 5, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5,0 ≤ t ≤ tthreshold + Δt,0 ≤ p ≤ 1}

d(t, p) ≤ dthreshold( p) rn = rmax
p r

r



because most energetic systems across all space and time scales exhibit behavioral oscillations 
of one form or another. Likewise, both linear and chaotic behaviors can be integrated into the 
Fourier series, and therefore, this provides a rich framework for expanding the observer 
perspective in space, time or probability to reveal hidden dynamics and grant predictability to 
initially unexplainable systems, where hidden systems can directly be incorporated as 
elements of the series itself. 
	 A simple, initial Fourier series that begins with a larger, singular oscillator, and then 
incorporates exponentially larger populations of smaller oscillators at each new level of the 
system, can be defined as 

 

Where  represents the base function for the n-th term, 

  represents the sum of the base function and its  duplicates for the 

n-th term, each with a unique phase shift . An expansion of the equation may therefore 
take the form of:  

 
	 This model can be modified in a variety of ways to reflect behaviors in the natural 
world. For example, if we assume the first equation of our series reflects the population of the 
earth (1) and its oscillation frequency around the sun (~  Hz), and the final 
equation in the series approximates the population of atoms within the earth (~10^50) with 
vibrational frequencies of roughly ~10^13 Hz, the general equation can be modified in a 
manner such as: 

 

Where the starting frequency matching the earth’s rotation around the sun begins at 
 Hz, and for subsequent terms,  scales the frequency from the 

base frequency  Hz, the number of duplicates for each term is scaled by 
, where , resulting in a frequency of ~10^13 for the final population of terms. 

Likewise, to ensure the population begins at 1, representing the earth, and ends at a 
population of ~10^50, representing the order of magnitude of atoms preset in the earth, the 
population cap of each subsequent term in the sum is multiplied by , where  
and . These exponential multiplies can be further modified and scaled depending 
on the number of desired, distinct population types within the equation series.  
  

Expanding 3-dimensional frames of reference to observe emergent 
phenomena in the Fourier model 

F (t) = sin(ω1t + ϕ1) +
21−1

∑
k=0

sin(ω2t + ϕ2,k) +
22−1

∑
k=0

sin(ω3t + ϕ3,k) +
23−1

∑
k=0

sin(ω4t + ϕ4,k) + …

sin(ωnt + ϕn)
2n−1−1

∑
k=0

sin(ωnt + ϕn,k) 2n−1 − 1

ϕn,k

F (t) = sin(ω1t + ϕ1) + (sin(ω2t + ϕ2) + sin(ω2t + ϕ2,1)) + (sin(ω3t + ϕ3) + sin(ω3t + ϕ3,1) + sin(ω3t + ϕ3,2) + sin(ω3t + ϕ3,3)) + . . .

2π × 1.1574 × 10−5

F (t) = eλ⋅1 sin (2π × 1.1574 × 10−5t + ϕ1) +
eγ⋅0−1

∑
k=0

eλ⋅2 sin (S2 ⋅ ω1t + ϕ2,k) +
eγ⋅1−1

∑
k=0

eλ⋅3 sin (S3 ⋅ ω1t + ϕ3,k) +
eγ⋅2−1

∑
k=0

eλ⋅4 sin (S4 ⋅ ω1t + ϕ4,k) + … +
eγ⋅4−1

∑
k=0

eλ⋅5 sin (S5 ⋅ ω1t + ϕ5,k)

2π × 1.1574 × 10−5 Sn = eδ(n−1)

ω1 = 2π × 1.1574 × 10−5

eδ(n−1) δ ≈ 10.23

eγ(n−1) eγ⋅4 = 1050

γ ≈ 28.8539



	 For each term in the series, one can define a 3D vector function where each 
component (x, y, z) is influenced by sine functions with different phases, frequencies, and 
amplitudes, with the general form: 

 

Where  is the base function for the n-th term in 3D, and  represents the k-th 
duplicate of the n-th term with a unique phase shift. Expanding this into x, y, and z 
components, first for the base function of the n-th term: 

 

For the duplicates: 

 

Here,  

 are the amplitudes for each dimension, and  are the phases for each dimension of 

the base function. For the duplicates,  represent unique phase shifts for each 

dimension and duplicate. 
	 To demonstrate the potential for a change in observer perspective to hide or reveal 
subsequent elements of the Fourier series, the position of the Fourier series point can be 
represented as , the observer’s position as , and the 

direction vector of the observer’s line of sight as . From here, the vector from  

the observer to the point can be calculated as 
 

with the dot product between  and  calculated as 
 

The magnitudes become 

 ,  

with the cosine of the angle angle  between  and  being 

 

This can now be incorporated into the visibility function as 

 

F(t) =
∞

∑
n=1

Fn(t) +
2n−1−1

∑
k=0

Fn,k(t)

Fn(t) Fn,k(t)

Fn(t) =
An,x sin(ωnt + ϕn,x)
An,y sin(ωnt + ϕn,y)
An,z sin(ωnt + ϕn,z)

Fn,k(t) =
An,x sin(ωnt + ϕn,x,k)
An,y sin(ωnt + ϕn,y,k)
An,z sin(ωnt + ϕn,z,k)

An,x, An,y, An,z

ϕn,x, ϕn,y, ϕn,z

ϕn,x,k, ϕn,y,k, ϕn,z,k

F(t) = (Fx(t), Fy(t), Fz(t)) O = (Ox, Oy, Oz)
D = (Dx, Dy, Dz)

V = F(t) − O = (Fx(t) − Ox, Fy(t) − Oy, Fz(t) − Oz)
V D

V ⋅ D = (Fx(t) − Ox)Dx + (Fy(t) − Oy)Dy + (Fz(t) − Oz)Dz

|V | = (Fx(t) − Ox)2 + (Fy(t) − Oy)2 + (Fz(t) − Oz)2 |D | = D2
x + D2

y + D2
z

θ V D

cos(θ ) =
(Fx(t) − Ox)Dx + (Fy(t) − Oy)Dy + (Fz(t) − Oz)Dz

(Fx(t) − Ox)2 + (Fy(t) − Oy)2 + (Fz(t) − Oz)2 ⋅ D2
x + D2

y + D2
z

Vinitial =
1

1 + e−κ(cos(θ) − (θbase − α ⋅max(0,k − 2)))



Here,  represent the x, y, z coordinates of the Fourier series point at time (t), 

 are the x, y, z coordinates of the observer's position,  are the components of 

the observer's direction vector, (n) is the term number in the series, (k) is the duplicate index 
within that term,  is the initial visibility angle threshold,  controls how visibility 
decreases with each duplicate after the third, and (k) (in the exponent) controls the steepness 
of the visibility transition. Where  > 0 controls steepness,   is the initial visibility 
threshold, and  adjusts visibility decrease per duplicate after the third. Since 

, the visibility function can be simplified to 

 

Where: 

 

	 This creates a visibility value that smoothly transitions based on the angle between the 
direction to the Fourier Series point and the observer’s line of sight, adjusted by the duplicate 
number in the series. Expanding the observer’s perspective can involve increasing  or 
decreasing the steepness parameter (k) to make more of the series visible. Therefore, this 
allows different equations in the Fourier series to be treated as ‘hidden systems’ that can be 
revealed in space, as well as time.  

Addition of time to the observer perspective and its influence on capturing 
emergent phenomena in the Fourier model 

	 To demonstrate that changes in the observer’s perspective in the time dimension can 
also hide or reveal new properties of the model, consider a simplified version of the 
exponentially duplicating Fourier series, with only a single duplication (with a single origin 
wave and two duplicated waves, otherwise identical except for phase): 

 =  +  + , where  is the phase 
shift for the first duplicate. One may imagine the first sine wave as an oscillation representing 
repetitive behavior of a larger macrosystem, and the two smaller sine waves representing 
oscillatory behaviors of smaller microsystems within the macrosystem.  
	 A new visibility function  can be created, where  
 is the observer's time frame, (t) is the time coordinate of the series, (n) represents the term 
number, and (k) represents the duplicate index. This can be set to depend on the ratio of the 
observer’s time frame to the period of the oscillation, as:  

Fx(t), Fy(t), Fz(t)
Ox, Oy, Oz Dx, Dy, Dz

θbase α

κ θbase ∈ [0,π]
α ≥ 0

arccos(cos(θ )) = θ

V (Fx(t), Fy(t), Fz(t), Ox, Oy, Oz, Dx, Dy, Dz, n , k) =
1

1 + e−k(θ − (θbase − α ⋅max(0,k − 2)))

θ = arccos
(Fx(t) − Ox)Dx + (Fy(t) − Oy)Dy + (Fz(t) − Oz)Dz

(Fx(t) − Ox)2 + (Fy(t) − Oy)2 + (Fz(t) − Oz)2 ⋅ D2
x + D2

y + D2
z

θbase

F (t) A1 sin(ω1t + ϕ1) A2 sin(ω2t + ϕ2) A2 sin(ω2t + ϕ2 + ϕshift1) ϕshift1

V (tobs, t, n , k) tobs



 

Here,  is the period of the n-th term (  ),  is a base threshold that determines 

when visibility begins to increase,  controls how visibility changes with each duplicate 
(subsequent wave equations), and (k) in the exponent controls the steepness of the transition 
from invisible to visible. Adding this to the previous series as an observed series  
results in: 

 

When  is small relative to , the visibility function  will be close to 0, making 
the first sine wave less visible or invisible. At this time frame, the observer would primarily see 
the oscillations from the second sine wave and its phase-changed version. As  increases, 

 increases, making the first sine wave more visible. The visibility of the second sine 
wave and its duplicate also depend on  relative to , but since only 1-2 rounds of 
duplication are considered, this may be high enough to be visible depending on the values 
used. 
	 The generalized visibility function to the n-th term and its k-th duplicate, 

  ,  

holds the general rule that the visibility of each subsequent sine wave component should 
decrease as the frequency decreases (or period increases) relative to the observer’s time frame 

. Therefore, components with shorter periods (or higher frequencies) become visible 
sooner, as  increases. Here,  is the period of the n-th term in the series. As (n) increases, 

 decreases, because for our emergent Fourier model to represent oscillator hierarchies of 
multiple system scales, higher-order terms must represent higher frequency components, 
which would correspond to smaller and faster system behaviors in the physical world, as if 
moving from planetary motion, to that of populations of humans, to populations of cells, to 
populations of molecules, to populations of atoms, and so on. 
	 For each term (n) in the series, a cutoff point exists in  where it becomes visible, 
and is influenced by:   
1) Period : Smaller  (higher frequency) means visibility occurs at smaller , which can 
be thought of as a rapid observation only being able to capture faster system behaviors. 
2) Base Threshold , which sets the initial visibility threshold. 
3) Visibility Change Rate , which controls how visibility changes with each duplicate, with 
higher values making duplicates less visible unless  is sufficiently large. 
4) Duplicate Index (k): Higher (k) values (later duplicates) will have lower visibility unless  
is large enough to overcome the phase shift and frequency effects. 
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	 Therefore, in our initial, simplified series  =  +  + 
, the two oscillatory motions comprising  would occur at a faster 

frequency and be observed before the slower , and so on for all additional equations added 
to the series in this manner, where the fastest oscillations are observed before slower, prior 
ones in the series, demonstrating that the observer perspective in time can once again 
influence whether a sufficient amount of information is or is not captured towards fully 
understanding a multiscaled system.  

Addition of probability to the observer perspective and its influence on 
capturing emergent phenomena in the Fourier model 

	 As seen in natural systems, the probability of successfully observing a fine-scale 
behavior can decrease as the space and time magnitude of the system behaviors under 
consideration decrease, as with the 100% probability of observing a full rotation of the earth 
around the sun, with more difficulty in observing a single atomic vibration. As demonstrated 
previously, the probability of a successful observation can determine whether or not the 
observer gains enough information about the system under consideration to fully describe it. 
Therefore, as the equation population in the modified Fourier series continues to duplicate 
and increase in number and in frequency for subsequent terms, so too can be the probability 
of observation be added to modify (in this case, decrease) the chance of successfully observing 
smaller oscillatory behaviors. This can be achieved through the creation of an exponentially 
decaying probability function, where the probability of observation decreases by a factor  for 
each step in the series — either by increasing (n) or adding a duplicate (k): 

 
Here, (n) is the term number in the series, (k) is the duplicate index within that term, and  is a 
parameter between 0 and 1 that controls the rate of decrease in probability, with a higher  
indicating a faster decrease in visibility probability with each new term or duplicate. From our 
prior equations, if we assume we have reached the  threshold where all frequencies, 
including the first frequency, are visible time-wise, we now add the probabilistic aspect to 
determine the final visibility. The visibility function from time time  will now be 
multiplied by the probability function (P(n, k)) to get the effective visibility: 

 
For the base function that we can consider as sineWaveA ( , ), 

, 
since , the probability of observing the base function is 100%. For the second term 
with its duplicate, sineWaveB ( , ), 

, 
and for its phase-changed duplicate ( , ), 

F (t) A1 sin(ω1t + ϕ1) A2 sin(ω2t + ϕ2)
A2 sin(ω2t + ϕ2 + ϕshift1) A2

A1

β

P(n , k) = (1 − β )n−1 ⋅ (1 − β )k

β
β

tobs

V (tobs, t, n , k)

Veff (tobs, t, n , k) = V (tobs, t, n , k) ⋅ P(n , k)
n = 1 k = 0

Veff (tobs, t,1,0) ⋅ sineWaveA(t) = V (tobs, t,1,0) ⋅ 1 ⋅ A1 sin(ω1t + ϕ1)
P(1,0) = 1

n = 2 k = 0
Veff (tobs, t,2,0) ⋅ sineWaveB(t) = V (tobs, t,2,0) ⋅ (1 − β ) ⋅ A2 sin(ω2t + ϕ2)

n = 2 k = 1



 

Therefore, for a general term (n) and its (k)-th duplicate, the equation would be:  
 

Here,  is the time-based visibility function, which we assume is 1 since  is 
large enough to observe all frequencies,  is the probability of observing this 
specific component,  is the amplitude of the n-th term,  is the frequency of the n-th term, 

 is the phase of the base function for the n-th term, and  is the additional phase shift for 
the k-th duplicate of the n-th term. Implementation: 
When  is small, the decrease in probability with each new term or duplicate is gradual, 
meaning higher frequency components (later duplicates or terms) still have a good chance of 
being observed. As  increases, the probability drops off more sharply, making it less likely to 
observe faster frequencies or later duplicates. This ensures that while time  allows for the 
potential visibility of all components, the probability function (P(n, k)) introduces a selective 
mechanism where the likelihood of observing each new component decreases, favoring the 
observation of the initial, slower frequencies over the faster, more recent duplications. This 
reflects the scenario where the observer's ability to perceive faster oscillations diminishes with 
each new addition to the series. 

Conclusion 
	 This writing uses several mathematical examples to demonstrate that the addition of 
information to the observer perspective in space, time or probability coordinates can allow one 
to explain and predict an otherwise unexplainable or unpredictable system. Therefore, many 
systems currently deemed emergent may simply be labeled as such due to lack of information 
in the observer perspective. This eludes to the possibility that an intentional study of emergent 
phenomena, spanning complex diseases to large scale climate systems, may help better 
understand and one day, predict them. 

Veff (tobs, t,2,1) ⋅ sineWaveBphaseChange1(t) = V (tobs, t,2,1) ⋅ (1 − β )2 ⋅ A2 sin(ω2t + ϕ2 + ϕshift1)

Fobs(t, tobs, n , k) = V (tobs, t, n , k) ⋅ (1 − β )n−1 ⋅ (1 − β )k ⋅ An sin(ωnt + ϕn + ϕn,k)
V (tobs, t, n , k) tobs

(1 − β )n−1 ⋅ (1 − β )k

An ωn

ϕn ϕn,k

β

β
tobs
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