
Understanding wave-particle duality 
through synchronized resonance 

Taylor Hinchliffe 
July 23, 2024 

Abstract 
 A photon in superposition can be represented as a Gaussian distribution of 
frequencies and wavelengths, and therefore, as a population of coupled oscillators. In the 
classic double-slit experiment, the photon interacts with immobilized atoms in a detector near 
a slit. This interaction triggers an electron state change in the detector, which emits an 
electromagnetic wave resonant with the photon’s central frequency and wavelength that can 
reach the photon before it passes. This resonance is hypothesized to pull the photon’s states 
into alignment, synchronizing the population of oscillators and collapsing the superposition 
into a single frequency and wavelength. Therefore, detector-triggered synchronization of a 
coupled population of oscillators representing a photon in superposition offers a potential 
explanation for wavefunction collapse observed in the two-slit experiment. 

  



Part I: Framework 
 As a generalization of Young’s classic double-slit experiment, a photon is found to take 
multiple paths towards a detection screen representing a state of superposition and 
resembling a wave when not observed. However, when a detection system is placed near the 
slits through which the photon may pass, the photon in superposition undergoes 
wavefunction collapse and behaves as a particle, taking a single path. An example of a common 
atomic component of detectors near the slits, used to detect the passing photon, is sodium, 
which can undergo a 3s to 3p electron state transition and releases an omnidirectional 
electromagnetic wave of approximately  Hz corresponding to a wavelength of ~589 
nm1. The input photon frequency and wavelength to be measured is selected by its energetic 
similarity to the energy difference between the atom’s electron states and the energy released 
by the electron state change in the detector, therefore corresponding to a similar frequency 
and wavelength, . Due to the similarities in their oscillation values, it is possible that 
the electromagnetic wave released from the electron state change, close to the resonant values 
of the photon, may drive the synchronization of their oscillations. As the states of the photon 
are ‘coupled’ as probabilities, interaction with an electromagnetic wave within the same 
‘dimension’, axis or basis vector as the detector may synchronize photon probabilities into one 
also within the same ‘dimension’, axis or basis vector as the detector. If an external 
electromagnetic wave can interact with a wave in superposition to pull its oscillations into 
alignment, the probability of detecting the single synchronized wave becomes ~100%, since 
the superposition of waves of equal oscillation values turns into a single probability, 
demonstrating particle-like behavior. This can be mathematically modeled by integrating a 
modified Kuramoto model of oscillator synchronization into an interaction Hamiltonian value 
that drives distance-dependent oscillator synchronization between frequencies and 
wavelengths. 

 Using the relationship between electromagnetic wave frequency  and wavelength , 
 and  , initial values representing Gaussian distributions of the photon’s 

wavelengths and frequencies as probabilities in superposition can be described as 

  

in frequency space, and  

  

as a wavelength distribution. The photon’s central frequency is described by , while  is the 
width of the Gaussian, and the width  can vary depending on how the photon is generated 
and released, such as narrowing with the use of a laser (~  Hz) or expanding with the use of 
a lamp (~  Hz).  
 The full Hamiltonian equation  governing the time evolution of the photon’s 
quantum state through the time-dependent Schrödinger equation 
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 can be written as  
 

where  is the Hamiltonian for the photon, with  and  is the photon’s 
frequency. This can be related to a time evolution operator  , which describes the photon’s 
state over time and can be represented as 

 
The interaction Hamiltonian,  , describes the influence of electromagnetic field 
oscillations and synchronization behavior between photon frequency and wavelength 
probabilities being driven by the external electromagnetic wave emitted from the detector. It 
borrows from the Kuramoto model,  

 

where   is the phase of the i-th oscillator,  is the natural frequency of the i-th oscillator,  is 
the coupling constant and  is the number of oscillators2. The interaction Hamilton becomes 

 

where  is the coupling constant,  is the distance-dependent function that can be assumed 
as 1 for simplicity,  is the phase difference,  is the Dirac delta function ensuring 
interaction at specific frequencies,  is the Dirac delta function ensuring interaction at 
specific wavelengths, and  is the external magnetic field oscillation frequency. This 
frequency,  , representing the electromagnetic oscillation released upon electron state 
changes in atoms (e.g., ~  for 3s to 3p in sodium, and a similar value for the 
generated photon to be measured via interactions with sodium atoms). The photon’s state after 
a time  due to the interaction Hamiltonian is given by 

 
where  is the initial state of the photon.  
 Following Hamiltonian-dependent evolution of the photon state over time, a collapse 
operator is then created to include the influence of the electromagnetic wave  from the 
sodium transition, which modifies the evolved state based on the probabilities from the initial 
Gaussian distribution, as 

 

in frequency space, and  

 

in wavelength space. Application of the collapse operator to the evolved state is represented as  
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 Upon synchronization and collapse of the traveling photon due to interaction with the 
electromagnetic wave released from the detector, the photon’s final state becomes weighted by 
the initial Gaussian distribution probabilities with the collapse operator as 

 

in frequency space, and  

 

in wavelength space.  
  

Part II: Change in Probabilities 
 Using frequency as an example, the probability of the photon being observed at its 
central frequency is given by 

  

using a central frequency of  Hz and a standard deviation of  Hz.  
If calculated within one standard deviation ( ) of the central frequency ( ) and given by the 

integral of the PDF from  to , the equation can be represented as  

 . 

For the standard Gaussian distribution  , the cumulative distribution function (CDF) 
evaluated at 1 minus the CDF evaluated at -1 can be represented by the following integral: 

 . 

The variable  can be converted to the standard normal variable  using the transformation: 
  

therefore 

 . 

The integral of the standard normal distribution over  can be found for the CDF as 
 

where  is the CDF of the standard normal distribution.  can be found to 
approximately equal , so that   

 
resulting in a 68.27% probability of the frequency being within one standard deviation of the 
central frequency. In an example where the detector-emitted electromagnetic wave 
synchronizes the probability states of the photon into the central frequency, the probability of 
observing the central frequency becomes 100% and superposition is lost: . 
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Part III: Approximation of the Interaction Distances 
 To evaluate the possibility of the detector-emitted electromagnetic wave interacting 
with the passing photon, the speed of light will be approximated as , and the 
initial interaction distance of 1 nm will be used as an approximation of the distance for which 
the traveling photon’s electromagnetic field may begin to effectively interact with the electron 
in the sodium atom. Let us also assume the detector is placed extremely close to the path of 
the photon but still perpendicular to it. The time required for the photon to cause an electron 
state change and re-emit an electromagnetic wave can be approximated as the interaction time 

 in the magnitude of attoseconds for an approximation of a quantum jump3. 
During this time, the photon would have traveled approximately  

 . Therefore, after the interaction, the photon is now 0.7 
nm (1 nm - 0.3 nm) from the detector when the electromagnetic wave is emitted. Then, let  be 
the distance traveled by the photon from its current position (0.7 nm from the detector) until 
it meets the electromagnetic wave. Since both the traveling photon and the emitted wave 
vibrate omnidirectionally, they will travel towards each other, with the distance traveled by the 
emitted wave represented as , and since speeds are equal,  and 

. Therefore, the photon will have only traveled roughly 1/3 of a nm before directly 
encountering oscillations from the newly emitted electromagnetic wave. Since this is less than 
the minimum interaction distance, one may assume the waves may meet and interact.  

Conclusion 
 In the classic double-slit experiment, a traveling photon in superposition can interact 
with atoms in a detector near the slit as it passes by to cause an electron state-change that 
releases an electromagnetic wave of a similar energy. This emitted wave can in turn reach the 
traveling photon before it passes the detector. Photon oscillations therefore ‘vibrate’ the atom 
into an electron state change which in turn ‘vibrate’ the photon into a state change. More 
specifically, the interaction of the external oscillation from the detector with Gaussian 
oscillation values of the photon is predicted to synchronize their states into one with 100% 
probability, providing an additional possible explanation for observation-driven wavefunction 
collapse within the phenomena of wave-particle duality.  
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c ≈ 3 × 108 m/s

tint ≈ 10−18 s
(3 × 108 m/s) × (10−18 s)

= 3 × 10−10 meters = 0.3 nanometers
d

0.7 nm − d 2d = 0.7 nm
d = 0.35 nm


